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ABSTRACT 
 

The modern world agricultural sector has come under severe attack from several factors. These 
factors range from biotic to abiotic factors and they present threats to the environment and the 
world economies at large. If agricultural production is made more sustainable, it can be able to 
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combat the current food shortages. Looking into the present scenario, there is a great need to 
improve the traditional breeding designing methods to develop genotypes of different crops that 
would be able to withstand the current adverse effects brought about by persistent climate change. 
Central to the basis and key factor of improving the designing methods in crop production are 
different digital technologies such as Artificial Intelligence (AI), Deep Learning (DL), Machine 
Learning (ML), Geographical Information System (GIS), Precision Agriculture (PA), and Remote 
Sensing (RS).  The digitalization of traditional breeding strategies has its weaknesses in terms of 
genetic gains it could offer in improving crop production. However, improving digital technologies 
would result in improved designing methods of crop production that would consequently result in 
increasing agricultural production and productivity. Therefore, the current review highlights the 
gains that have been made especially by AI and ML in designing methods of crop production. In 
addition, the review also highlights the limitations of these digital tools and their potential in crop 
designing methods for future crop genetic gains and production as well. 
 

 

Keywords: Artificial intelligence; crop design methods; digitalization; machine learning; production. 
 

1. INTRODUCTION 
 

A re-look at how productivity and production in 
agriculture, are addressing the issue of food 
shortage currently and in the future is something 
that cannot be argued anymore. Especially that, 
the world’s population is expected to rise by 
approximately 9.6 billion by 2050 [1]. Any efforts 
designed to overcome the current and future 
challenges that are affecting or have the potential 
to affect agricultural production and productivity 
negatively should be encouraged [2]. In today’s 
agriculture sector, there are myriad factors that 
affect the full potential of crop production [3]. 
These factors range from biotic to abiotic stress 
conditions that have the potential to significantly 
affect crop development, from breeding to the 
production point. Major challenges experienced 
by agricultural production in the recent past 
include bottlenecks created by climate change, 
the reduction of water for irrigation purposes, an 
exponential rise in the cost of production, and the 
general decrease in the workforce dedicated to 
agricultural production as a result of the COVID-
19 pandemic among other factors [4]. Both biotic 
and abiotic factors present threats to the 
environment and also to the world economies, 
concerning achieving sustainability of the present 
and future agricultural production and supply 
systems. To combat and overcome the factors 
that negatively affect crop production, there is a 
need to significantly innovate ways and means 
that will help in keeping pace with the current 
constant climate change [5-8]. The seemingly 
unavoidable question would be, how best do we 
produce enough and of good quality food meant 
for the ever-growing population estimated to 
reach approximately 9.6 billion by 2050? 
 
Modern crop design methods have achieved 
tremendous gains at the breeding and also 

production levels. Way back in the 19th century, 
genetic gains were heavily achieved through 
crossing and selection which involves combining 
and selecting classical breeding methods based 
on Mendel’s laws, which also touches on 
experimental designs used in plant breeding [9]. 
During the 20th century, the gene pool 
enhancement that touches areas like wide 
crosses, pentaploid breeding in crops such as 
wheat, and also doubled haploid production were 
used to advance the breeding strategies. At the 
dawn of the 21st century, other crop designing 
methods came into the picture which includes 
rapid generation advancement e.g., shuttle 
breeding, and speed breeding (Fig 1), hybrid 
breeding, high throughput phenotyping platforms, 
high throughput genotyping platforms (genomics, 
pangenomics, transcriptomics, proteomics), 
epigenetics, and genome editing technologies 
[10]. Suffice to say, the advent of digital 
technologies is becoming a central point in 
designing methods that are promising to keep 
pace with the current constant and persistent 
climate change [11]. In the past, the development 
of crop designing methods was highly influenced 
by traditional or conventional methods. Currently, 
among all the digital technologies, AI and ML, 
have been employed on a larger scale to 
integrate with crop designing methods that are 
helping plant breeders to build genotypes that 
have high resilience towards climate change. 
Inspite of the gains made, the currently existing 
digital technologies have their weaknesses that if 
not worked on, may not be good enough for 
future research and crop sustainability production 
[12]. Therefore, this review becomes vital 
because it highlights the gains, limits, and 
potential that digital technologies (i.e., AI and 
ML) have in aiding crop designing methods             
(Fig 1) for future crop genotype designs, that 
could be able to overcome the current adverse
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Fig. 1.  Digital agriculture for crop genetic improvement 
 
effects caused by climate change, to overcome 
the current food shortages. 
 

2. ACHIEVEMENTS IN DESIGNING 
METHODS FOR FUTURE CROP 
GENOTYPES  

 

2.1 Artificial Intelligence 
 

AI has been defined by several researchers in 
different ways, central to its definition is the 
concept of integrating human intelligence in a 
machine, designed to operate in the same way 
humans do, by imitating their behavior [13]. 
Furthermore, researchers have highlighted that 
the term AI is mainly applied when describing a 
machine that can demonstrate the characteristics 
of human beings. It embraces the use of sensors 
and instruments such as spectrometers, digital 
cameras, etc. to enhance the process of 
capturing the data, before analysis and decision-
making [14]. Previous strides of gains and 
achievements made by AI (Table 1) in the 
academic cycles have shown both opportunities 
and threats, strength and weakness, for various 
domains in science, including crop breeding 
programs. To achieve desired tasks effectively 

and efficiently through proper machine 
programming, AI methods require large 
repositories of data. Besides, it uses algorithms 
that require large amounts of data to train the 
machine to enhance its ability in moderating the 
process of making decisions thereby promoting 
complex traits screening, such as detecting 
disease invasion in disease trial screening, at an 
early stage of crops and this, in turn, has 
improved the process of making decisions. In 
terms of developing crop designing methods, AI 
has made a significant contribution in the area of 
high-throughput phenotyping. This has been 
demonstrated by some researchers [5], which 
demonstrated the power of AI in giving insights 
into complex traits such as the architectural 
genetics of flowering time in wheat plants. 
Similarly, it has allowed and helped plant 
breeders to expand into areas that have not been 
explored in the past by designing crop methods 
that are capable of helping breeders to develop 
smart climate crop genotypes [3]. Previously, 
measuring phenotypic crop traits has been 
centered on traditional methods that involve 
destructive means succeeded by laboratory 
steps to explore phenotypic traits linking them to 
their genetic functions. 
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The emergence of AI through imaging 
techniques has recorded achievement in this 
area, in that, sampling of plants can be done in a 
non-destructive manner, by capturing, 
processing, and analyzing data for observable 
traits of interest in different crops [9]. Moreover, 
its application in imaging techniques, it has been 
widely used, in-field phenotyping platforms and 
open-source devices for the collection of data 
and also in cyberinfrastructure for data 
management in different plant breeding 
programs to come up with better crop                 
designing methods that have high potential in 
facilitating the breeding of climate-smart elite 
lines [14]. Contrary to this, the use of AI has a 
high potential to create technological 
unemployment. AI-based models and tools              
used in different agricultural operations that             
are commercially available to ease the 
phenotyping, data collection, assessment of 
biotic and abiotic stress, and prediction of yield 
and quality of the products are shown in Tables 1 
and 2. 
 

2.2 Machine Learning  
 
The focus of AI research has been ML since the 
1970s. Different statistical models have since 
been developed to aid crop breeding programs, 
e.g., Bayesian networks, Perceptron, and 
support vector machines [27]. However, the 
challenge has been and still is that there is no 
single framework that works in a better way for 
all tasks. The determination of the best models 
for a given problem still poses a challenge. 
Despite the highlighted challenges in determining 
statistical models for a given task, ML models 
and algorithms still receive a wide and 
comprehensive utilization in plant breeding 
programs (Table 2). This may be due to the 
rising and successful establishment of data 
processing infrastructure, combined with the 
neutral network’s establishment, high-level 
computational, and abundance of data [28]. 
There have been several gains and 
achievements made by machine learning in plant 
breeding programs (Table 1) [29]. Major 
achievements of machine learning models and 
algorithms in crop breeding include the 
exploration of large datasets and further 
discovering models, that are capable of 
developing resolutions through the development 
of patterns that combine features simultaneously 
unlike the process that analyses the features 
independently and separately. The step of 
combining the features simultaneously instead of 

analyzing them separately used to be a 
challenge when using traditional processing 
methods, this may have been due to the high 
complexity of images of the plants and their huge 
quantity, which in this case, machine learning 
models can handle. ML has been effectively 
applied in the process of identification and 
classification of diseases that affect crops such 
as wheat, maize, and soybean, among other 
tasks [28]. To achieve this, supervised learning 
has been of help through the training of 
algorithms with images sampled from a large 
dataset, and in this way, algorithms can identify 
and classify plants that are diseased during 
disease screening [30]. The gains of ML 
regarding disease identification have been 
demonstrated in the research by Moshou et al., 
2004 [10]. The researchers successfully used ML 
to automatically detect yellow rust in wheat. 
Though ML has the strength to detect crop 
diseases as demonstrated, it has one central 
weakness, in that, it can prevent the exploration 
of unexpected and novel traits that less precise 
unsupervised machines can be able to discover 
in crops [31]. 

 
The establishment, enhancement, and 
advancement of high-throughput phenotyping 
that is nondestructive in crop breeding programs 
have heavily been influenced positively by 
imaging techniques of ML. Central to this gain is 
the ability of ML’s utilization of multiple imaging 
sensors that can collect the data of plants in near 
real-time platforms [32]. These sensors have the 
capability of collecting huge amounts and 
volumes of phenotypic data that can easily be 
handled by ML, since it was built and has been 
developed to handle big data challenges, such 
as those experienced when dealing with 
traditional breeding methods in designing crop 
genotypes. Large volumes of data (big datasets), 
still pose a challenge with regard to being sorted 
out, analyzed, and interpreted when using 
traditional processing methods but ML models 
and algorithms have the power to utilize ways 
and approaches that are effective, faster, and 
efficient in the process of analyzing the data 
collected. Through its models and algorithms, 
has also made some gains in utilizing the tools 
such as statistics, decision and probability 
theories, and optimization in the process of 
extracting features from enormous datasets, 
thereby creating possibilities by making it easy to 
identify features in tasks that are complex such 
as phenotyping of different forms of stress in 
different crops [33]. 
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Table 1. Artificial intelligence models used in different agricultural applications 
 

Model Application Crop Inputs Results Ref 

DCNN High Throughput Phenotyping Wheat Genotype and phenotype data (Correlation Coefficient)>0.7 [15] 

DCNN High Throughput Phenotyping Soybean Genotype and phenotype data (Correlation Coefficient)>0.4 [16] 

DNN Yield 
Prediction 

Soybean Unmanned Aerial System 
Images 

R2.0.72 [17] 

ANN Yield 
Prediction  

Wheat Unmanned Aerial System 
based Vis 

R2.0.7701, 0.112 [18] 

RF Yield  
Prediction 

Wheat 
 

Unmanned Aerial System 
based Vis 

R2.0.7800, 0.1030 [18] 

PLSR Yield  
Prediction  

Wheat Unmanned Aerial System 
based Vis 

R2.0.7667, 0.1353 [18] 

DNN Yield 
Prediction 

Maize 2018 Syngenta Crop 
Challenge 

Root Mean Square Error: 46% [19] 

RCNN Fruit 
detection  

Citrus Unmanned Aerial System Precision>90% [20] 

RCNN Fruit 
detection 

Apples Unmanned Aerial System R2.0.80 [21] 

CNN Weed  
detection  

Rice Unmanned Aerial System General accuracy 
weed mapping:89% 
weed identifing:88% 

[22] 

DCNN Disease  
Detection  

Wheat Unmanned Aerial System 
images (hyperspectral) 

Accuracy: 0.85 [23] 

DCNN Disease  
detection 

Banana Field images General 
Accuracy: >90% 

[24] 

RF Disease 
detection 

Wheat Unmanned Aerial System 
images (hyperspectral) 

Accuracy: 0.77 [23] 

RF Biomass 
Estimation 

Barley Unmanned Aerial System 
images  

(Correlation Coefficient): 0.95 [25] 

CNN Biomass 
Estimation 

Maize Field images Accuracy: 99% [26] 

DCNN; Deep Convolution Neutral Network, DNN; Deep Neutral Network, ANN; Artificial Neural Network, RF; Random Forest, PLSR; Partial Least Square Regression, RCNN; 
Region- Convolutional Neutral Network, CNN; Convolution Neural Network 
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Table 2. Artificial Intelligence (AI)-Based tools commercially available for agriculture 
 

Company Products Website 

Trace Genomics This product is a soil analysis system, it uses machine learning and is designed to 
provide a sense of the soil’s strengths and weaknesses 

tracegenomics.com 

Harvest CROO Robotics This product is a robot system designed for picking and packing vegetables. harvestcroorobotics.com 

Blue River Technology The product is a smart farm machine, designed for the management of crops at a plant 
level and further protecting the crops from weed infestation. 

bluerivertechnology.com 

AGEYE Technologies This product was specifically designed for indoor farming and it’s an Artificial 
Intelligence-powered platform. 

ageyetech.com 

Fasal This product uses affordable sensors, it’s been designed to provide critical parameters to 
small farmers, central to this technology is Artificial Intelligence. 

fasal.co 

Vine View This is the product that has aerial-based spectral sensors. It also has a cloud-based 
image processing service that is designed to monitor the plant health system. Its aerial-
based spectral sensors are highly specialized. 

vineview.com 

PEAT This is a product that is designed with a high specialization in image recognition i.e., 
identifying potential abnormalities and nutrient deficiencies in soils. Central to this 
product is deep learning. 

plantix.net 

HelioPas AI This is a system developed to monitor soil moisture content and regulate the irrigation 
process. It is also used in the detection and management of mildew and drought. 

heliopas.com 

aWhere This is the product that is designed for indoor farming. Central to this product is its 
Artificial Intelligence-powered platform. 

awhere.com 

FarmShort This is the product designed to prescribe variables and carry out integrated scouting for 
farmers. Its core purpose is based on images captured using drones and satellites. 

farmshots.com 

Root AI This is a product that is designed for indoor farmers. Central to this product is its Artificial 
Intelligence-powered platform that is automated and has robotic solutions. 

root-ai.com 

Ibex Automation This is a product with a robust Agric-robotic system that is autonomous. It also has an 
autonomous system that can detect and spray weeds. 

ibexautomation.co.uk 
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3. WAY FORWARD  
 
With a lot of uncertainty that still covers today’s 
environment due to the ever-changing climatic 
conditions [34], there is a need to optimize the 
utilization of digitalization, as this has a heavy 
bearing on the designs of breeding methods to 
be utilized for future plant breeding programs. 
The strength of artificial intelligence ranges from 
molecular to organismal scale, with this ability, 
combined with its capability to characterize 
complex traits in a very detailed and near real-
time manner, AI still presents a ray of hope in 
designing crop methods that have the potential to 
bridge the gap between the phenotypic and 
genotypic traits of diverse crops. 
 
Likewise, inspite of the gains and achievements 
made by crop designing methods using ML 
models and algorithms, there is a need to still 
explore ways of making it more effective and 
efficient to improve the development of climate-
smart crop genotypes. Some of the strong points 
of ML are its ability to handle large volumes of 
data (big datasets), creating possibilities for 
developing and advancing ML approaches to a 
level where a single framework will be able to 
handle multiple tasks simultaneously and 
precisely which would otherwise enable future 
crop researchers to create crop designing 
methods that would have high accuracy, great 
precision and easy to execute. Furthermore, as 
feature identification of complex traits, it provides 
a platform to design crops with great precision 
and less time-consuming, and has the potential 
to reduce breeding cycles of crops to increase 
the genetic gains. Below is the chart describing 
the impact and potential of digital agriculture with 
a focus on AI and ML and their contribution in 
optimizing crop genetic improvement if efficiently 
and effectively used. 
 

4. CONCLUSION 
 
Innovations that can help us produce food 
sustainably, more effectively, and efficiently are 
no longer a question to be debated. Digital 
technologies such as AI and ML, present a 
promising platform for designing methods that 
have a high potential to make crop production 
operate at an optimal level where food 
production is concerned. Moving forward, there is 
a great need to improve the weaknesses that still 
exist in AI and ML if the current challenges and 
future needs are to be addressed. Improving 
digital technologies would result in an 
improvement in designing methods of crop 

production which would consequently increase 
agricultural production and productivity. 
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