Saline Water Threshold Level that Maximizes Grain Yield Production and Minimizes Sodium Accumulation for Salinity Stress-sensitive and Tolerant Wheat Cultivars

Main Article Content

Sabah Morsy
Ibrahim S. Elbasyoni
Stephen Baenziger


Saline irrigation is one of the approaches that was developed to address the freshwater gap in many regions around the world. This experiment was conducted in two growing seasons under open field conditions in pots. In addition to the control (0.5 dSm-1), three levels of saline water, i.e., 5.0, 7.0, and 9 dSm-1 were used to irrigate ten commercially grown Egyptian wheat cultivars. The number of days to flowering, plant height, fertile tillers, grain weight per spike, number of kernels per spike, and grain yield were measured. Furthermore, Na+, K+, Ca+2, Mg+2, and Clwere also measured. The objectives of the current study were to (a) estimate the quantitative impact of various levels of saline irrigation water on physio-agronomical performance of commercially grown wheat cultivars; (b) highlight the importance of using salinity stress tolerant wheat cultivars in a scenario where they grow beside salinity stress-sensitive ones and are irrigated with multiple levels of saline water. Salinity stress tolerant wheat cultivars tend to maintain higher levels of K+, Ca+2, and Mg+2, compared to the sensitive ones. Overall, the average performance of the salinity stress-tolerant cultivars across the levels of saline water used was 26.5% higher than the sensitive ones for grain yield. Our results also indicated that 6.25 dSm-1 is the maximum saline water that can be used to irrigate the sensitive wheat cultivars. In which 6.25 dSm-1  is the salinity level that maximizes grain yield, the number of fertile tillers, and K+  concentration while minimizing  Na+ accumulation in plants. For the same reasons, nine dSm-1 was defined as the salinity threshold for the salinity stress-tolerant cultivars.

Salinity tolerance, K/Na ratio, soil salinization, K , Ca 2, Mg 2 deficiency.

Article Details

How to Cite
Morsy, S., Elbasyoni, I. S., & Baenziger, S. (2021). Saline Water Threshold Level that Maximizes Grain Yield Production and Minimizes Sodium Accumulation for Salinity Stress-sensitive and Tolerant Wheat Cultivars. Asian Journal of Research in Crop Science, 6(1), 9-28.
Original Research Article


Shrivastava P, Kumar R. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Elsevier; 2015.
DOI: 10.1016/j.sjbs.2014.12.001

Zaman M, Shahid SA, Heng L, Shahid SA, Zaman M, Heng L. “Soil salinity: Historical perspectives and a world overview of the problem,” in guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques (springer international publishing). 2018;43–53.
DOI: 10.1007/978-3-319-96190-3_2

Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M et al. Bread Wheat With High Salinity and Sodicity Tolerance. Front. Plant Sci. 2019;10:1280.
DOI: 10.3389/fpls.2019.01280

Singh P, Mahajan MM, Singh NK, Kumar D, Kumar K.. Physiological and molecular response under salinity stress in bread wheat (Triticum aestivum L.). J. Plant Biochem. Biotechnol. 2020;29:125–133.
DOI: 10.1007/s13562-019-00521-3

Dadshani S, Sharma RC, Baum M, Ogbonnaya FC, Léon J, Ballvora A. Multi-dimensional evaluation of response to salt stress in wheat. PLoS One. 2019;14:e0222659.
DOI: 10.1371/journal.pone.0222659

Mancosu N, Snyder RL, Kyriakakis G, Spano D. Water scarcity and future challenges for food production. Water (Switzerland). 2015;7:975–992.
DOI: 10.3390/w7030975

Kotb TH, Watanabe T, Ogino Y, Tanji KK. Soil salinization in the nile delta and related policy issues in Egypt. Agric. Water Manag. 2000;43:239–261.
DOI: 10.1016/S0378-3774(99)00052-9

Hamam KA, Negim O. Evaluation of wheat genotypes and some soil properties under saline water irrigation. Ann. Agric. Sci. 2014;59:165–176.
DOI: 10.1016/j.aoas.2014.11.002

Ghassemi F, Jakeman AJ, Nix HA. Salinisation of land and water resources: Human causes, extent, management and case studies. CAB international; 1995.

Ayars JE, McWhorter DB. Incorporating crop water use in drainage design in arid areas. American Society of Civil Engineers; 1985.

Ayars JE. Managing irrigation and drainage systems in arid areas in the presence of shallow groundwater: Case studies. Irrig. Drain. Syst. 1996;10;227–244.
DOI: 10.1007/BF01102808

Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K. New insights on plant salt tolerance mechanisms and their potential use for breeding. Front. Plant Sci. 2016;7. DOI: 10.3389/fpls.2016.01787

Munns R, Tester M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008;59:651–681.

Kamran M, Parveen A, Ahmar S, Malik Z, Hussain S, Chattha MS et al.. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int. J. Mol. Sci. 2020; 21.
DOI: 10.3390/ijms21010148

Tavakkoli E, Rengasamy P, McDonald GK. High concentrations of Na+ and Cl- ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress. J. Exp. Bot. 2010;61:4449–4459.

Wu H. Plant salt tolerance and Na+ sensing and transport. Crop J. 2018;6:215–225.
DOI: 10.1016/j.cj.2018.01.003

Manchanda G, Garg N. Salinity and its effects on the functional biology of legumes. Acta Physiol. Plant. 2008;30:595–618.
DOI: 10.1007/s11738-008-0173-3

Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front. Physiol. 2017;8:509.
DOI: 10.3389/fphys.2017.00509

Hasanuzzaman M, Nahar K, Rahman A, Anee TI, Alam MU, Bhuiyan TF et al. “Approaches to enhance salt stress tolerance in wheat,” in wheat improvement, management and utilization (intech); 2017.
DOI: 10.5772/67247

Hernández JA. Salinity tolerance in plants: Trends and perspectives. Int. J. Mol. Sci. 2019;20.
DOI: 10.3390/ijms20102408

Naylor D, Coleman-Derr D. Drought Stress and Root-Associated Bacterial Communities. Front. Plant Sci. 2018;8:2223.
DOI: 10.3389/fpls.2017.02223

Jenks MA, Hasegawa PM, Jain SM. Advances in molecular breeding toward drought and salt tolerant crops. Springer Netherlands; 2007.
DOI: 10.1007/978-1-4020-5578-2

Läuchli A, Grattan SR. “Plant growth and development under salinity stress,” in advances in molecular breeding toward drought and salt tolerant crops (Springer Netherlands). 2007;1–32.
DOI: 10.1007/978-1-4020-5578-2_1

Saddiq MS, Afzal I, Basra SMA, Iqbal S, Ashraf M. Sodium exclusion affects seed yield and physiological traits of wheat genotypes grown under salt stress. J. Soil Sci. Plant Nutr. 2020;1-15.
DOI: 10.1007/s42729-020-00224-y

Fariduddin Q, Mir BA, Ahmad A. Physiological and biochemical traits as tools to screen sensitive and resistant varieties of tomatoes exposed to salt stress. Brazilian J. Plant Physiol. 2012;24:281–292.

Herrmann H, Bucksch H. “Soil salinization,” in dictionary geotechnical engineering/wörterbuch geotechnik. 2014;1268–1268.
DOI: 10.1007/978-3-642-41714-6_195352

Santos Pereira L, Cordery I, Iacovides I. Coping with water scarcity: Addressing the challenges. Springer Netherlands; 2009.
DOI: 10.1007/978-1-4020-9579-5

Feng G, Zhang Z, Zhang Z. Evaluating the sustainable use of salinewater irrigation on soil water-salt content and grain yield under subsurface drainage condition. Sustain. 2019;11.
DOI: 10.3390/su11226431

Munns R, James RA, Läuchli A. Approaches to increasing the salt tolerance of wheat and other cereals. In Journal of Experimental Botany. 2006:1025–1043.
DOI: 10.1093/jxb/erj100

Heydari N. Water productivity improvement under salinity conditions: Case study of the saline areas of lower karkheh river basin, Iran. In Multifunctionality and Impacts of Organic and Conventional Agriculture (IntechOpen); 2020.
DOI: 10.5772/intechopen.86891

van der Zee, SEATM, Stofberg SF, Yang X, Liu Y, Islam MN, Hu YF. Irrigation and drainage in agriculture: A salinity and environmental perspective. In Current Perspective on Irrigation and Drainage (InTech); 2017.
DOI: 10.5772/66046

Forero LE, Grenzer J, Heinze J, Schittko C, Kulmatiski A. Greenhouse and field-measured plant-soil feedbacks are not correlated. Front. Environ. Sci. 2019;7.
DOI: 10.3389/fenvs.2019.00184

Tavakkoli E. Limitations to yield in saline-sodic soils : Quantification of the osmotic and ionic regulations that affect the growth of crops under salinity stress. Transport; 2011.

Kakar N, Jumaa SH, Redoña ED, Warburton ML, Reddy KR. Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice. 2019;12:57.
DOI: 10.1186/s12284-019-0317-7

Shannon MC. Adaptation of plants to salinity. Adv. Agron. 1997;60:75– 120.
DOI: 10.1016/S0065-2113(08)60601-X

Chinnusamy V, Jagendorf A, Zhu JK. Understanding and improving salt tolerance in plants. In Crop Science. 2005;437–448.
DOI: 10.2135/cropsci2005.0437.

El-Hendawy SE, Hassan WM, Al-Suhaibani NA, Refay Y, Abdella KA. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front. Plant Sci. 2017;8.
DOI: 10.3389/fpls.2017.00435

Yassin M, El Sabagh A, Mekawy AMM, Islam MS, Hossain A, Barutcular C et al. Comparative performance of two bread wheat (Triticum Aestivum L.) genotypes under salinity stress. Appl. Ecol. Environ. Res. 2019;17:5029–5041.
DOI: 10.15666/aeer/1702_50295041

El-Hendawy S, Al-Suhaibani N, Elsayed S, Alotaibi M, Hassan W, Schmidhalter U.. Performance of optimized hyperspectral reflectance indices and partial least squares regression for estimating the chlorophyll fluorescence and grain yield of wheat grown in simulated saline field conditions. Plant Physiol. Biochem. 2019a;144:300–311.
DOI: 10.1016/j.plaphy.2019.10.006

Gadallah A, Milad I, Yossef YA, Gouda MA. Evaluation of some egyptian bread wheat (Triticum aestivum ) cultivars under salinity stress; 2017.

Staff soil survey. Keys to soil taxonomy. 12Ed. United States Dep. Agric. Nat. Resour. Conserv. Serv. Lincoln. 2014;97:123-287.

Krishnasamy K, Bell R, Ma Q. Wheat responses to sodium vary with potassium use efficiency of cultivars. Front. Plant Sci. 2014;5:1–10.
DOI: 10.3389/fpls.2014.00631

Federer WT, King F. Variations on split plot and split block experiment designs. John wiley & Sons: New York, NY, USA; 2006.
DOI: 10.1002/0470108584

Steel RGD, Torrie JH. Principles and procedures of statistics: A biometrical approach. 2nd Ed. McGraw-Hill Publishing Co., New York; 1980.

Cochran WG, Cox GM. Experimental Designs. 2d Ed. Wiley, New York; 1957.

Mendiburu F de, Gomez KA, Gomez AA, Gomez KA. Statistical procedures for agricultural research. 1984;680.
Available:,+2nd+Edition-p-9780471870920 [Accessed January 23, 2018]

Alvarado G, Rodríguez FM, Pacheco A, Burgueño J, Crossa J, Vargas M et al. META-R: A software to analyze data from multi-environment plant breeding trials. Crop J. 2020;8:745–756.
DOI: 10.1016/j.cj.2020.03.010

Ward JH. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963;58:236–244.
DOI: 10.1080/01621459.1963.10500845

Boretti A, Rosa L. Reassessing the projections of the world water development report. npj Clean Water. 2019;2:1–6.
DOI: 10.1038/s41545-019-0039-9

Velmurugan A, Swarnam P, Subramani T, Meena B, Kaledhonkar MJ. “water demand and salinity,”. In Desalination - Challenges and Opportunities [working title] (IntechOpen); 2020.
DOI: 10.5772/intechopen.88095

Siebert S, Burke J, Faures JM, Frenken K, Hoogeveen J, Döll P et al. Groundwater use for irrigation - a global inventory. Hydrol. Earth Syst. Sci. 2010;14:1863–1880.
DOI: 10.5194/hess-14-1863-2010

Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA. Plant responses to salt stress: Adaptive mechanisms. Agronomy. 2017;7:18.
DOI: 10.3390/agronomy7010018

Ji C, Mao X, Hao J, Wang X, Xue J, Cui H et al. Analysis of bZIP transcription factor family and their expressions under salt stress in Chlamydomonas reinhardtii. Int. J. Mol. Sci. 2018;19.
DOI: 10.3390/ijms19092800

Wang N, Qian Z, Luo M, Fan S, Zhang X, Zhang L. Identification of salt stress responding genes using transcriptome analysis in green alga chlamydomonas reinhardtii. Int. J. Mol. Sci. 2018;19.
DOI: 10.3390/ijms19113359

Kazan K, Lyons R. The link between flowering time and stress tolerance. J. Exp. Bot. 2016;67:47–60.
DOI: 10.1093/jxb/erv441

Hütsch BW, Jahn D, Schubert S. Grain yield of wheat (Triticum aestivum L.) under long-term heat stress is sink-limited with stronger inhibition of kernel setting than grain filling. J. Agron. Crop Sci. 2019;205:22–32.
DOI: 10.1111/jac.12298

Ruan Y, Hu Y, Schmidhalter U. Effect of tiller removal on ion content in mainstem and subtillers of spring wheat under moderate salinity. J. Plant Nutr. 2012;35:1314–1328.
DOI: 10.1080/01904167.2012.684124

Alarcón JJ, Morales MA, Ferrández T, Sánchez-Blanco MJ. Effects of water and salt stresses on growth, water relations and gas exchange in Rosmarinus officinalis. J. Hortic. Sci. Biotechnol. 2006;81:845–853.
DOI: 10.1080/14620316.2006.11512148

Thorne GN. Distribution between parts of the main shoot and the tillers of photosynthate produced before and after anthesis in the top three leaves of main shoots of Hobbit and Maris Huntsman winter wheat. Ann. Appl. Biol. 1982;101:553–559.
DOI: 10.1111/j.1744-7348.1982.tb00858.x

Tian Z, Li J, Jia X, Yang F, Wang Z. Assimilation and translocation of dry matter and phosphorus in rice genotypes affected by salt-alkaline stress. Sustain. 2016;8.
DOI: 10.3390/su8060568

Ruan Y, Hu Y, Schmidhalter U. Insights on the role of tillering in salt tolerance of spring wheat from detillering. Environ. Exp. Bot. 2008;64:33–42.
DOI: 10.1016/j.envexpbot.2008.04.004

Fischer RA. The importance of grain or kernel number in wheat: A reply to sinclair and jamieson. F. Crop. Res. 2008;105:15–21.
DOI: 10.1016/j.fcr.2007.04.002

Dreccer MF, Wockner KB, Palta JA, McIntyre CL, Borgognone MG, Bourgault M et al. More fertile florets and grains per spike can be achieved at higher temperature in wheat lines with high spike biomass and sugar content at booting. Funct. Plant Biol. 2014;41:482– 495.
DOI: 10.1071/FP13232

Blum A. Improving wheat grain filling under stress by stem reserve mobilisation. In Euphytica (Kluwer Academic Publishers). 1998;77–83.
DOI: 10.1023/a:1018303922482

Srivastava A, Srivastava P, Sharma A, Sarlach RS, Bains NS. Effect of stem reserve mobilization on grain filling under drought stress conditions in recombinant inbred population of wheat. J. Appl. Nat. Sci. 2017;9:1–5.
DOI: 10.31018/jans.v9i1.1137

Hippolyte I, Jenny C, Gardes L, Bakry F, Rivallan R, Pomies V et al. Foundation characteristics of edible musa triploids revealed from allelic distribution of SSR markers. Ann. Bot. 2012;109:937– 951.
DOI: 10.1093/aob.c

Asgari HR, Cornelis W, Van Damme P. Salt stress effect on wheat (Triticum aestivum L.) growth and leaf ion concentrations. Int. J. Plant Prod. 2012;6:195–208.
DOI: 10.22069/ijpp.2012.775

Kim S, Park M, Yeom SI, Kim YM, Lee JM, Lee HA, Seo E, Choi J, Cheong K, Kim KT, Jung K. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics. 2014;46(3):270-8.

Asch F, Dingkuhn M, Dörffling K, Miezan K. Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica. 2000;113:109–118.
DOI: 10.1023/A:1003981313160

Dubcovsky J, Santa María G, Epstein E, Luo MC, Dvořák J. Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor. Appl. Genet. 1996;92:448–454.
DOI: 10.1007/BF00223692

Akter M, Oue H. Effect of saline irrigation on accumulation of Na+, K+, Ca2+, and Mg2+ ions in rice plants. Agric. 2018;8.
DOI: 10.3390/agriculture8100164

Ehret DL, Redmann RE, Harvey BL, Cipywnyk A. Salinity-induced calcium deficiencies in wheat and barley. Plant Soil. 1990;128:143–151.
DOI: 10.1007/BF00011103

Hussain Z, Khattak RA, Irshad M, Mahmood Q, An P. Effect of saline irrigation water on the leachability of salts, growth and chemical composition of wheat (Triticum aestivum L.) in saline-sodic soil supplemented with phosphorus and potassium. J. Soil Sci. Plant Nutr. 2016;16:604–620.
DOI: 10.4067/s0718-95162016005000031

Griffiths M, York LM. Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency1[open]. Plant Physiol. 2020;182:1854–1868.
DOI: 10.1104/PP.19.01496

Huang S, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES et al. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol. 2006;142:1718–1727.
DOI: 10.1104/pp.106.088864

El-Hendawy S, Elshafei A, Al-Suhaibani N, Alotabi M, Hassan W, Dewir YH et al. Assessment of the salt tolerance of wheat genotypes during the germination stage based on germination ability parameters and associated SSR markers. J. Plant Interact. 2019b;14:151–163.
DOI: 10.1080/17429145.2019.1603406

Mee CY, Balasundram SK, Mohd Hanif AH. Detecting and monitoring plant nutrient stress using remote sensing approaches: A review. Asian J. Plant Sci. 2017;16:1–8.
DOI: 10.3923/ajps.2017.1.8